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ABSTRACT

An interesting and little discussed class of problems in the theory
of beams, plates, and shells is suggested by the contact of a pneumatic
tire with a roadway. It is a purpose of the present discussion to con-
gsider in detail the various stresses and deformations which occur in
certain simple symmetric shells which are forced into contact with
rigid flat surfaces. It is hoped that detailed solutions of relatively

simple problems will aid in laying the foundation on which may be based

discussions of more complicated problems.

Shear deformation has been included in the governing equations of
linear, small deformation shell theory under the premise that the
rapid changes of curvature which may occur near the contact region might
lead to significant shear stresses and strains. It is assumed that

surface normal stresses are applied in the contact region while surface
shear stresses are neglected.

It has been shown that a possible means for analyzing such prob-
lems involves the solving of the system equations separately in the
free region and in the contact region. The two solutions are then
matched at the common boundary at the edge of the contact region.

This method has been applied to contact problems involving half-
rings and spherical caps. Numerical results show that the effect of
shear deformation should not be neglected when the radius-to-thickness
ratio is 10 or less.

Experiments performed on rubber half-rings tended to verify the
shear-deformation analysis. An exception is the prediction of the
normal stress distribution in the contact region. Although the shear-
deformation analysis offers a better approximation than the classical
bending theory, it may be surmised from the results given here that
transverse normal stresses and strains should be included for accurate
prediction of this quantity.

ix




CHAPTER I

INTRODUCTION

An interesting class of problems in the theory of beams, plates,
and shells is suggested by the contact of a pneumatic tire with a
roadway. Included in this class might be static and dynamic problems
where some portion of the body being considered is forced to come into
contact with another rigid or elastic surface. Thus a displacement
condition is imposed on the contact region of the body and known normal
stresses act on the remainder of the surface.

Only a few discussions on this subject are known to the current
author. Basically two types of analytical approaches have been used
in solving these problems. The most common approach has been to
assume the Kirchhoff hypothesis of classical beam, plate, and shell
theory. This leads to a shear stress resultant discontinuity at the
boundary between the contact region of the body and the portion of
the body which does not remain in contact. The other approach has
been to include the effect of shear deformation under the premise
that the rapid changes of curvature which may occur near the contact
region might lead to significant shear strains and stresses.

Theories which do not include the effects of shear deformation

1

have been used in many discussions. Most recently Wu and Plunkett

have considered the large deformation of two thin circular rings which



are forced into contact by the moving together of two rigid surfaces.
They indicated that the assumption of perfect slip between the contact-
ing surfaces might be inaccurate since the major portion of the applied
normal load is provided by the shear force discontinuity at the edge
of the contact region. Gudramovich and Mossakovski? have solved a
problem inveolving an elastic ring which is loaded by a surface tangen-
tial stress applied sinusoidally along the circumference and, by this
means, pressed into contact with a segment of a circular arc. Several
bending problems involving straight beams which are forced into contact
with rigid surfaces are discussed by Timoshenko.5 In Ref. 4 he solves
two problems involving circular plates.

The contact of pneumatic tires with a rigid surface has been
the subject of several reports by S. K. Clark and associates. 1In
Ref. 5 the Theorem of Minimum Potential Energy is used to determine
the deformations and stresses in a tire statically pressed against a
rigid flat surface. The length of the contact region is determined
by applying the condition that the normal pressure must be zero at
the edge of the region. An analog for a tire is an elastic ring on a

6,7

weak elastic foundation. In these analyses the shear stress re-
sultant is again considered discontinuous.

Whether an approximation to the shear discontinuity is actually
developed at the edge of a contact region is an open question at the

present time. Mossakovskii was unsuccessful in obtaining detailed

information using a photoelastic "rigid" surface. Some pressure
b g




measurements on automobile tires indicate no increase of pressure at
the outer periphery of the contact region, while others show this ef-

fect. However there is some evidence that the highest pressures in

the contact region of an aircraft tire are developed near the edge of
contact. This may be due to the large deflections and incipient buck-
of soft half-rings {see Figure 17), measurement
dicate that peak pressure occurs at the center of contact. There is

no evidence of the concentrated force. The magnitudes of gquantities
such as the ratio of radius to thickness, the elastic modulus, and the
deformations may strongly influence the shape of the pressure distribu-
tion in the contact region.

Essenburg8 uses Reissner plate theory to solve a problem involving
circular plates. There is no shear discontinuity using this formulation.
A discontinuity arises in the normal surface pressure which rises to a
peak value at the edge of the contact region and immediately drops to
zero outside the region.

The purposes of the current thesis may be stated as follows:

1. Development of a technique for applying shell theory including
shear deformation to static contact problems involving simple rings
and shells;

2. solution of some representative problems using this technique;
and

3. experimentation designed to examine some of the important load

and deformation quantities arising in the contact of half-rings with a

rigid flat surface.



CHAPTER II

GENERAL THEORY

A. INTRODUCTION

The purpose of this chapter is to develop the general theory for
the remainder of the thesis. To make the material relatively self-
contained, the first section includes a listing of Naghdi's equations9’lo
for a linear shell theory which includes the effects of transverse shear
deformation. In the next two sections a calculating procedure is de-
veloped for solving problems involving the contact of particular sym-
metric shells with rigid flat surfaces. The chapter is concluded with
a discussion of boundary conditions occurring in such problems and com-
ments concerning extension of the technique.
B. EQUATIONS OF LINEAR SHELL THEORY INCLUDING TRANSVERSE SHEAR

DEFORMATTON

If 0 and @ are coordinates of a point on the middle surface of a
shell and { is the distance measured along an outward normal to the

middle surface, the square of the linear element of the resulting cur-

vilinear orthogonal coordinate system is
ol 2
P 2 *
ds :A(l"‘i)&[o(l-f-B{H-—f-) +ifl (2.1)
R"( Re

where Ry and Rg are the principal radii of curvature of the middle

surface. For an axisymmetric shell, the metric coefficients A and B




may be written as

A=R (<) » B-= R, (s)aime = PCJ  (2.2)

In surface of revolution coordinates the equilibrium equations of Ref. 9

reduce to the following three equations:

d\(HNdz _ N &H
©

D) ax-l'i’\/:.‘o

S - R ) e =0

M_ }JRO(\/ =0 (2.5)

d

where Ny and Ng are the normal stress resultants in the & and © direc-
tions; Vg is the shear stress resultant due to the transverse shear
stress Tat s and My is one of the stress couples. It should be noted
that the non-zero stress couple Mg does not appear in these equations.
Quantities such as Nyos Nga, Mygs Mgys and Vg are zero due to the sym-
metry of the problem.

The normal displacement W, which will be measured positive along
an outward normal to the middle surface, and the tangential displace-
ment Uy, which will be measured positive in the a-direction, are

assumed to be of the form

Ui=u+eg , W=w (2.)

where u and w are the components of middle surface displacements and



B is the change of slope of a line which is initially normal to the
middle surface. In terms of these quantities the middle surface

strains become

or W
o rR, I R,

N
K
i
=
~
N
1
NI
I

do¢

¢ rRo(
E: :.—L—-iiﬁfl - (—g;— - E) (2.5)
f Ry d« R,
Finally the relations between stress resultants and midsurface strains,
9

(
as derived from a shell form of a variational theorem due to E. Reissnen”’

are written as

M :[(Kcﬁ—vKg)—- IT - ﬁ;) 6::] D (2.6)

where _ Eh _ E;_,g
K - D= 1A (1-v2)

When shear deformation is neglected in an analysis, certain of the

Equations (2.4), (2.5), and (2.6) must be rewritten as

Uo( = U Y° =0 (2.7)

11




The last of (2.6) is deleted indicating that Vy is determined completely
by equilibrium. The rotation B must now be specified in terms of u

ané w and may be written

be 4 (- 32)

ot

C. THE SYSTEMS OF EQUATIONS FOR THE ANALYSIS OF A CONTACT PROBLEM

Figure 1 shows the geometry of the problems which are to be considered.

The shell, which has its edge rigidly fixed at

Figure 1. Contact of a circular ring on sphere with a rigid flat surface.

Q = O, 1s symmetric about @ = O and possesses a constant undeformed
radius R. This restricts the problems which may be solved to contact
of a segment of a sphere or contact of a segment of a ring beam. A
rigid flat frictionless surface, initially in contact only at a = 0,
has been moved upward a distance wn. Some length of the beam's surface
bounded by @ is now assumed to be in contact. It is clear that a dis-

placement downward of the edge @ = O of the shell constitutes the same

problem.




The calculating procedure which will be used to solve these prob-
lems consists of three parts. The first two parts are completed with
the solution of systems of equations in the contact region and the free
region. The third part involves satisfaction of fixity conditions at
the shell's edge O = O ; examination of symmetry requirements at o = O,
and matching of the solutions at the edge of the contact region o = a.

In the free region the system of equations to be solved consists
of (2.3), (2.5), and (2.6). As the surface normal stress is assumed
to be zero, q+ = 0 in the second of (2.3). The resulting equations
form & linear ordinary sixth-order system.

In the contact region the system will be slightly more complicated
because of the non-zero normal surface stress q+ which appears in the
second of (2.3). This new unknown may be balanced by a restraint equa-
tion which arises because points on the undeformed surface of the shell
must move to points on the rigid surface of contact. This equation,
which is discussed in detail in the next section, is a relation between
the three displacements u, w, and B. The resulting system of equations,
consisting of (2.3), (2.5), (2.6), and the restraint Equation (2.11)

is of the fourth order.

D. THE RESTRAINT EQUATICN FOR THE CONTACT REGION
When the rigid surface is moved through the distance wg, a point
A on the surface of the initially undeformed shell will move to a point

A' on the rigid surface. The accompanying displacements u, w, and B




are shown in the exaggerated drawing, Figure 2. TFrom geometry the mo-

tion of A, as related to the motion Wwo of the plane, may be written
Wy —(R+2) 1= cen )

_ h
_%mo(- W Ceoof + umv(-ECcrL(Bw() (2.9)

)
LS

h/2

ki

Figure 2. Motion of a point on the surface of the shell to a point
on the contact plane.

\

where h is the thickness of the shell and w is a negative displacement.
If w or u had been assumed in the opposite direction for some other At
they would have yielded the same geometrical relationship. This equa-

tion may be made dimensionless by dividing through by R giving
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W, - (1+ 25 ) 1- coe)

LR
h _ . A (2.10)
= R Covet— WCoae + Rabn o = 2zCow (f+)
where
0 - Wo —_ W T U :
Wo=g* 9 W= 72 =g (211

Equation (2.10) will be linearized for the present work under the
assumptions of small deformation linear shell theory and the small con-
tact length defined by ®@. Terms will be ordered as follows: cos o and
cos B are Order 1; Wy, h/2R, u, sin &, sin B, &, and B are Order 2;
products of first order terms are Order 3; etc. An expansion of (2.10)

gives

h

— =%
+ 2R oo

T h
Wy, - 1 + Coox —‘Sjﬁ

= %mo(—u“rmo(f-amo(

h ( ot B) (2.12)
_ Cedor Coe B — oim QAN

xR X IB
When the series expansions of the sine and cosine functions are used

where appropriate and if terms of third order or higher are neglected,

the restraint equation may be simplified to

It is felt that this expression is consistent with Naghdi's shear de-

formation theory in that h/2R and terms of similar order are not neglected

with respect tc 1.
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E. CONDITIONS AT THE BOUNDARIES

The edge & = X is assumed to be fixed forcing the requirement that

W () =0 Ullx,)=0 (2.14)

which implies that

W(=e)=0 , U («)=0, B(2)=0 (2.15)
As the system of equations for the free region is of the sixth order,
only three of the unknown coefficients in the general solution remain
after application of these conditions.
As a result of symmetry and the imposed motion wp, the conditions

which must be satisfied in the contact region at @ = O are

W (o) = — o ) B (o0)=o0 (2.16)

If the first of these relations is substituted into the linear restraint

Equation (2.13), it is apparent that

a (O) = O (2.17)
follows as & result. When (2.16) and (2.17) are satisfied, it follows

that the change in slop of W must vanish, hence

7 0

) o o (2.18)

If all these conditions are applied to the last of (2.6), the quantity

V must vanish indicating that
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(2.19)

Thus it is seen that only two of the five boundary conditions at a = O
are independent. For the two problems which are solved in the follow-
ing chapters two coefficients remain in the general solution for the
contact region after these boundary conditions are applied to the fourth
order system.

At the boundary o = O six stress resultant and displacement quan-
tities may be matched in order to solve for the six urknown coefficients
consisting of three from the free region, two from the contact region,
and either @ or Wp. The matching of u, w, B, Ng, My, and Vy effectively
establishes the continuity of the displacements and their first deriva-
tives. It follows that the quantities Ng and Mg will also be continuous
at O = 0. A discontinuity occurs in the normal pressure q+ as it in-
volves a higher order derivative of displacement.

F. COMMENTS ON THE EXTENSION OF THE CURRENT TECHNIQUE TO GENERAL
AXTSYMMETRIC PROBLEMS

Conceptually it would not be difficult to extend the current work
to the contact of an axisymmetric shell with a curved axisymmetric sur-
face. The equilibrium Equations (2.3) and the stress resultant-dis-
placement Equations (2.5) and (2.6) remain unchanged. A more general
restraint equation would be necessary. The order of the system remains

the same. The only possible change might occur in the number of quan-

tities which could be matched at o = Q. It would be necessary to examine
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a general restraint equation to determine whether two or less unknown

coefficients would remain in the general solution for the contact re-

gion after application of the boundary and symmetry conditions at o = O.




CHAPTER IITI

SOLUTION OF THE HALF-RING PROBLEM

A. THE SYSTEM EQUATIONS

The ring-beam problem which will be considered in detail involves
the contact of a half-ring with a rigid flat surface. A half-ring is
defined as a segment of a ring having its fixed edge at o = n/2. This
problem will be treated as a plane problem. Thus deformations and
stresses in a direction normal to the a-{ plane will not be considered.

In cylindrical coordinates the squared linear element is
dea- > _leo. L2+ 6
st = R 1+R o« +AZ t+ASf (3.1)

where z is the direction normal to the @-f{ plane. This corresponds to

choosing

RG = oo (3.2)

in surface of revolution coordinates. The eguilibrium Equations (2.3)

become .
N+V = 0
: +
V-N+Rgqg = 0 (3.3)
M-RV = O
where "'" indicates differentiation with respect to @. It should be

noted that the subscript o has been dropped from the stress resultants.

Using similar conventions the strains are

1L
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0

G,:—'ﬁ-(dtwp—w-) ) €,:=0

Ker :_:%—ﬁ ) Kz =O

o _ I - W
b;ff - R w- ( R t%) (3.4)
Substitution of these into the Equations (2.6) results in

N = %%—( A+ w — %&Tﬁ‘lé‘)

.M:%[B—-%—(&q—ur)] (3.5)

EGh(I ' U
V=56h(l U
65 (R Rt B
The restraint Equation (2.13) remains unchanged as does the Equation

(2.8) for the rotation B which results when shear-defommation is neg-

lected.
B. SOLUTION IN THE FREE REGION

1. Solution Including Transverse Shear Deformation
Because q+ = 0 in the free region the equilibrium equations are
easily solved. The second of (3.3) is substituted into the first yield-
ing
N+N = 0 (5.6)
the solution of which is
N = By cosx + Bp sina. (3.7)

The shear resultant may be written
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V = By sina - B, cosQ. (3.8)

The first integral of the moment equation is

M = - RBp cosQ - RBp sina + Bs. (3.9)

If the first two equations of (3.5) are solved for u + v and B, there

results

W+ w = Bs

K ( | —~ m) ‘ (3.10)
frrim N s M
( nR) D<l— liR")

The second of these equations may be integrated giving

by 2
p=- QDR/wqu- B’“RcmowD( ﬁlB%JrB‘,_ (3.11)

A differential equation in u results if the first of (3.10) is dif-

ferentiated and substituted into the third of (3.5).

Ll + U = é'R ‘) B oiner
6R_, R? R™Bj (5-12)
+(m+_6_>8lm°( +D(,_3k‘- 'f"RBq_
12 RT

Using variation of parameters the general solution of this equation is

found to be
U= By conot+ By m’mo(—B,/’z, (ohmex - ot coaor)

+ B toimod 1y, By K- oimot)+ RB, (1-coae)  (3-13)
where

~ 3R R> o R™
12 R‘)
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The normal deflection w may now be found directly from the first of

(3.10).
W = By aimer — By cowo + B M X admof

~B,.M, (m'mo(+o<cmo(>+ Bs (— —,p)‘j+ %mo()
(3.15)

- R B, aim«

If the boundary conditions (2.15) at the fixed edge O = n/2 are applied
to the displacements u, w, and B, the constants B, Bs, and Bg can be

Nz B,coeot + B, n o
V= Bamx -8, couwo
M= ~RB Coner - RBy dimer + By
BB, Bl oim B froses + B (- T)
W= B,[’)?,CO‘QO( (<= T+ —%B(I—Mo()}i- My Ba [00'0.°(
+o-Dand + By[ 7 (- 1)+ Blorae]
w = B, [ (- ) aim ot = (7 = B2)oran]

=B, [ (x=F)erac] + By f-{oimer-)

As expected there are three unknown coefficients in these solutions.
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2. Solution for Classical Bending Theory

For the bending problem the shear resultant V ig determined from
equilibrium alone. Hence the rotation Equation (2.8) is substituted
for the last of (3.5). The solution of the system is begun in the
same manner, the Equations (3.6) through (3.1l) being the same. If
(2.8) is differentiated once and if the Equations (3.10) are sub-

stituted into this result, a differential equation for w is given by

. _ R? R? B ! *
ur‘-f—l,U"..—D-B,Can-i- —b—BaMo(-l-_-——Ef-(W__g_ (3.17)
I3 R*

Using variation of parameters the general solution of this equation is

found to be

W= By Cou + 86M°< + 1 g' X pAn o

_ R B“'(o( Cov,o(—,o)mrx> —3—(1 szo() (5:29)

The tangential displacement u may now be found directly from (2.8).

3
u= %g (qu ma)+7&35R—(:zcmo(+o<mmoQ
L BaR

: (— Oimer + %—E;> + RB, S

I R
The boundary conditions at oy = n/2 may now be applied to the displace-
ments u, w, and B resulting, as before, in relations between Bj, Bp,

B5 and By, Bs, B§. Substitution of these guantities into the expressions

for the general solutions results in

TTTm =S BE BN BN BN BN B B BN BN ) BN Ea A UE aE e e
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N = B,Oouo(. + By s
V= B, simax— B, coax
M=~ RB,couex —RB, aimor + B,

= [§(1~Mdﬂ B, *[‘%‘EQMJB&L [P/ (O(_;;:)]B3

SRRV T (3.20)

u = gg[l('“m“)"'(d_ g)cmo(]} B, + _Bi[m«x
rlo=Daima]} b+ 5 ot (- EY 1+ £,
W= Z( [oav,o(+ («——)M“J} B
+ __B_a_[(o(— g)mo(l{ B, +% (admec-1) B3

2D

C. SOLUTION IN THE CONTACT REGION

1. Solution Including Transverse Shear Deformation

The system of equations to be solved consists of the equilibrium
Equations (3.3), the stress resultant-displacement Equations (3.5)
and the restraint Equation (2.13). 1If the first and third of the
equilibrium Equations (3.3) are written in terms of displacement and

if the restraint equation is written

W = utan - g (5'21)
. . 2 .
w = utand + u sec X - g
where
g = (wg - R) seca + R, (3.22)

the following two equations in B and u result:
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—%[(de%mdi-um’*o(—j——‘ap\ ﬁ]
5’5%[ 0 tan o +— uMc*o(-R—-g‘- B]:O

R
2[23. = u}Tamoc = U pacor + é] (3.23)
R R R '

I | u -
—-——-———'[—FTWA-taAme(‘f‘R‘U.ﬂﬂceb('-j%' —‘7§"F ﬁ =0

Although these equations appear to be formidably coupled, they are
easily separated by substituting B from the second into the first yield-
ing the result
. . ) .
u+utana + usec a = g, (3.24)
the first integral of which is
W+utang = g +C (3.25)

where C is an arbitrary coefficient. The general solution is
u= (w;—R)nj/vxo( +C, M) Conw + Coconef  (3.26)

where N(a) is defined by

Ne) =+ fog L 2m (3.21)

| ~ @imer

and

C|:C+R
Substitution of (3.26) into (3.23) gives the differential equation

for B,

g‘xalg = C—'RX&M‘X (3.28)

N GEE N N N O B N S B B G N D G D BE oGam e
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where the large coefficient X2 is defined as

L _ 56hR>
X™ = 6D

Using variation of parameters the solution of (3.28) is found to be

(3.29)

/S:C3€7¢°(+C+E‘XV+C,(I,+IX) (3.30)

where I and I, are given by

I=—20e™ [ *Munt dt
L= Zx e e* fant dt

o

(3.31)

Two independent boundary conditions may now be applied to the solutions
for uand B at @ = O and it will be seen that the other three are auto-

matically satisfied.

tg (O) =z 0 = (:3 + C:q.
W)= 0 = (wg=R)(0) + C5 Alo) (1) + C,

These imply that
- - (3.32)
C:3 - C:q. 7 C:aL - C)
The solutions for B and u become
B = Cs.m'ml{x,o( +C,(I,+1I)

W = (w;—R)m'mx + 1 he) coaer (3:33)

The remaining solutions w, N, M, V and g% may now be calculated

directly from the Equations (3.3) and (3.33).
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w= R(Coaor = 1)~ Wy conet + C Alet) oimox

N= JF%{C'[ m%( I+1,)- %{ZMW"R}
:—%{C,kﬁﬁ-x(ﬁ[ﬁhﬂ+C5_>Ccm9n76°(+1} (5:24)

V= S8k gc,[_‘;mw(r r L)+ Cy Ainhite]

§ L - £ o] - S5 [
+ X (- L,+I;L)B —Cs )(,[ ElhRa"— 2 @"7@@9,)@( K_ﬂ

It is easily shown that the remaining boundary conditions

;) w)=-uz 35 M0)=0

x=0

are automatically satisfied.

2. Solution for Classical Bending Theory
The Equation (3.24) applies equally well to both the classical
theory and the shear deformation theory, hence the solution u may be

written as

W= (%—R)MN+C,}\(0<)c,o<zo( +(C coe o (3.35)

If this result is substituted into the restraint Equation (3.21), the

solution for w may be written as

W = (R- w;)covex + (0, A(e)simax + C , 2imes R (5.36)
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The major difference between the two theories arises in the formation
of B. This guantity now is formed from the rotation Equation (2.8) and

assumes the simple form
ﬁ:——%— Jom o (3.37)

The quantities N and M may now be found directly from the stress re-

sultant-displacement equations.
I R
1= Bel 3+, e ]

Finally the shear resultant and the normal surface pressure in the con-

(3.38)

tact region may be found from the equilibrium eguations.

\/:: — E&%%éﬁ_ pecor Lo o

FohT Sh [ s ] 7

The boundary conditions on the quantity u gives

w(0)=0 = C4 (3.40)
Examination of the solutions B, w, and V show that the conditions
ﬁ(o): 0 9 wo)=-wyg y, (,U'L(_O:o 7 V(O):O

are all automatically satisfied. Only one unknown coefficient remains
in this solution. This fact arises because the restraint on the rota-

tion B serves to lower the order of the system of eguations.
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D. BOUNDARY MATCHING OF THE TWC SOLUTIONS AND NUMERICAL RESULTS

Both classical and shear deformation theories have been used to
find general solutions in the free and contact regions. The only re-
maining step is the matching of the stress resultant and deformation
quantities at the common boundary, & = &, between the two regions.

The shear deformation solutions (3.16) contain the unknown coef-
ficients By, Bp, and Bz while the solutions (3.33) and (3.34) contain
Cyp and Cs. Neither wg or o have been specified to this point. One
or the other may be arbitrarily chosen as the externally applied boundary
condition. Thus the six equations of continuity which may be written

at the boundary ¢ = o are

ho=tp 2 WREUE e =P (3.51)

Ne = Np > Me=Mp o Ve =V}

where the subscripts "c'" and "f" indicate the contact and free regions.

|

In detail these equations are

{aima] uy + §A(@) e[ C, - fy coud (z - L)
+%3(|-M&)}B, - §7,E~,oao?+ (z-T) aﬁm&]}BaL
fato Ty o], = Ao

{-coedtus + {\@oinC, - 1 (Z—F)oin7
-—(/*7,——%3}00@&}8, + Z(/*Z, (&—g)ma‘}gk
~{%;‘(M&_|)} B, = R(I-cn=&) (3.42)
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{I,rIA}C, + {M’CE}CS'Z('%}("M&)} B,
_ {—MN}B a)} B3 =

&1~ n.R( L+I }C va.R C‘N}"C}C

~f{ermz}s, -foima}p, = K

Bk 2 T C oo Ot fRora ] B
+{Rons} B, ~ 138, = -2

(E6[L fanz+ (5, +)[IC, +§ 28R sinbxa]C,

- {@Vn =]B, + {mo‘(} B, = O (3.12)
Because of the complexity of this system it was decided to find the
solutions for the unknown coefficients numerically on a digital com-
puter rather than to develop specific expressions. This is most
easily accomplished by specifying the length of the contact region &
and then solving the resulting six by six system of linear algebraic
equations for By, Bp, B3, Ci, 05, and w,. These results are then
used to compute all stress and deformation quantities and the solution
procedure is complete for the shear theory.

The classical solutions (3.20) contain unknown coefficients By,

Bp, and Bz while the solutions (3.35) through (3.39) contain Cj. As
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before, the final unknown is given by Q or Wg. The five continuity
equations which may be written at the boundary a = Q for this case

are

Ue=Up ) W =up ) Be = B
= pd{) / ch = [\1P

which may be written in detail as

(3.13)

{M&}% + g}\(&)cona"«}C ~Z(§%[9~("" AN )
#(7-T)eoaz]} B, - fB2 [cmm+ (- D)oimz][B,
‘{%K[WE‘*("—“%)/(”/;R*)J} By = Rams

{—cou&up + | AR) 4mZ(C, - { | coea
+(@- D) aimalt B, + 55 (&-I)W&} Ba.

+ B (1-pinz)] By = - Rooe

kB3 [C, - {8 (1- 0in)] B, - f Ronxlt,
D ez o o
(R i) forasf - foina] 8, =K

{—F%:Hmw)}c+{Rmu}B+§RMW}B -8, = —

It should be noted that the shear stress resultant is not forced to be
continuous as it was for the higher order shear deformation theory.

Compatibility of displacements is assured by the Equations (3.4k4) while
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the guantities V and q+ are given entirely by equilibrium. The same
numerical procedures may be used to determine the unknown coefficients
and finally to complete the solution.

A numerical study of the solutions is presented in Figures 3-8
and Tables 1-10. Appropriate nondimensional forms for the displace-
ments are set forth in Equations (2.11). The form of Equalions (3.5)
indicate that convenient nondimensional stress resultants are

N=8 » M=ggfM »V=5%
=+ _ %'f (I—‘U") (3.15)

L E

These quantities may also be related to the stresses using the stress-

stress resultant equations of Naghdi

- Owe (1-02) S _ Jub (1-03) Z_ 3T (1+v)
N=""¢ 7 M= Veo5g

where oye is the normal membrane stress, ogp is the maximum stress due
to bending at the outer surface of the shell, and T is the transverse
shear stress.

The figures show a direct comparison of the classical and shear
deformation theories for a typical soft thick ring. The variables
used in constructing the figures were chosen to bring out the maximum
differences between the two theories. The basic shape of these curves
remains unchanged with variation of R/h, @, and the modulus parameters.
However the magnitudes of the different variables change as do the

magnitudes of the differences between classical and shear deformation
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theories. The tables contain a parametric study of the solutions. In
Tables 1 and 2 the effect of variation of Q or ;5 is shown. The wvaria-
tions in the solutions for radius to thickness ratios of 10 and 50

are shown in Tables 3 and 4. All other quantities are held constant.
Finally the material properties are considered in Tables 4 and 5 with
thin rubber and steel rings being considered. Tables 6-10 are the same
as 1-5 except that the classical solutions are used for computing the
numbers.

The most interesting aspect of Figure 3 is the comparison of the
rotation B for the shear deformaticn and classical theories. In the
contact region & < .2 the Kirchhoff hypothesis forces normals to the
midsurface of the ring to become normal to the rigid contacting sur-
face. Shear theory relaxes this restriction and a significant dif-
ference (25%) between the two theories is encountered for the thick
ring. A study of the tables shows that a notable difference (13%) is
still present for R/h = 10, but that the two theories give nearly
identical results for R/h = 50.

The form of the dimensionless stress resultants shown in Figure U
ig similar for the two theories with one exception. The discontinuity
in V, which must be supplied as an externally applied load for the
classical theory, and its effect on the pressure distribution in the
contact region (see Figure 5) should be noted. As the rings are made
thinner the distribution of 5& for shear theory tends to approach the

distribution of the classical theory in that sharp peaks are developed
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Figure 5. Normal compressive stress g for ring. «a = 0.2,

R=51in., R/h = 5, E = 222 1b/in‘?, v = 0.5.
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near the edge of the contact region. However at the very edge of the
contact region the pressure drops sharply as would be expected and de-
sired! This behavior has been observed only in calculations for the
thin rings and is demonstrated in Tables 4 and 5.

Figure 6 is a plot of the externally applied load versus the
central deflection 55. Due to the restraining effect of the Kirchhoff
hypothesis, the slope of the curve for the classical theory is steeper.
As the rings are made thin the two curves become coincident.

Figure 7 points out another well-known difference between
classical and shear deformation theories. It is seen that a finite
point load must be applied to the classical ring before any contact
region is developed. It is this point load which is propagated along
the coordinate & to form the shear discontinuity. PFor the thin rings
this particular difference between the two theories is lessened but
has not been eliminated as can be seen by examining ﬁ.in Tables 5 and 10.

In comparing the results for the steel and rubber rings it is seen
that the deformation patterns remain the same as would be expected be-
cause of the boundary condition on a. The shapes of the stress resul-

tant curves remain the same but are much magnified for the steel ring.
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CHAPTER IV

SOLJUTION OF THE CONTACT PROBLEM FOR A SPHERICAL CAP

A, THE SYSTEM EQUATIONS

The sphere problem which will be considered in detail in this
chapter involves the contact of a spherical cap with a rigid flat sur-
face. The maximum possible size of the cap as given by the location

of its fixed edge e is determined by the relation
R Ya\Va
o () < 1L (k1)

where R is the radius, h is the thickness, and v is Poisson's ratio.
This rule for limiting the extent of the cap is based on the approxi-
mate nature of the shallow sphere solution in the free region.

In spherical coordinates the squared linear element given by

(2.1) becomes
dar= B (14 o+ Roainog (1o £ de™ + > 2
where
Re=R 9 Re=R , r=Remn (+:3)
The equilibrium Equations (2.3) are written
Ne + (N = N.)etne +V =0 ()
V + Vne = (N + Ng)oinx + RgF= 0
Me+ (M= M,) =RV = 0O

35
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The relations between the stress resultants and the displacements

become

N, = Lé—[u + vucthnot + (1+2) W]

Ng = —E— vi+ uchna + (1+v) wr]

—

if ghear deformation is included in the analysis. The restraint equa-

tion given by (2.13) remains unchanged.

w;::R(l—coqx)—-urcovLo( + U pin (h.6)

B. SOLUTICN IN THE FREE REGION
A two-term asymptotic solution of the equations governing the de-
12
formation of a spherical shell has been given by DeSilva and Cohen.

Their work is based on the linear transverse-shear deformation theory

10
of Naghdi. The governing equation is

\?’Létﬂor*[oiﬁ ’LM]Y_ )

where




(

37

(ein o()ya' (B, + { J‘f’)

B R
[&k:m—h——

m = (12(-v*))*
d=d,+i J,

6= (1= 53~
J v + [¥]
L¥]

(4.8)

Nl

=—< (1+v)

C = (_.,)Pﬁ_

and where ¥ is related to a horizontal radial stress resultant Py
which is directed outward and is defined by
- . k.

Y= EH’* P aime (1.9)
The quantity By represents the rotation of normals to the midsurface
of the shell. As the sign convention for many of the quantities in the

. 12 . .

paper by DeSilva and Cohen is the reverse of the sign convention
adopted in the greater portion of this thesis, a subscript "r" will be

added to the reversed quantities to indicate this fact.

The two-term asymptotic solutions of Equation (L4.7) are given as

“ H—D’] 2+ Jo () () HE ()
1= 'QJ(");” 2t J, ) T e
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-4 () HE (1) = by () KO ()]

~ oy, 1+0Y LR (1) B ()
Yo = R ST T L

*Ho (1) dal) + B (D) 4o ()]

(4.10)

where

n?:: poc ; P = Lzé'/l C;;Zl (4.11)

The limit of these solutions in a neighborhood of the origin @ = O is
I Y]
~ mh )E 4+C¥]
YI“‘ ”2 | +i aﬂlJ (k.12)

Yo & /7ylel)("z)[ "1/\41?&]

These equations from De Silva and Cohen will be regarded as the solu-

tlons for the free region of the spherical cap in the work that follows.
Equation (4.1) is based on a comparison of (4.12) with (L4.10) for

nonzero values of n. The largest difference between these two sets of

solutions occurs when Qe and R/h satisfy

e ((1 (-v2)A)A = 1

This may be seen by evaluating Y, at O, subtracting Y, of Equation

(4.10) from Y, of Equation (4.12), and factoring out the common

1/2 (l)(

guantity n  H;

nl/EHl(l)

n). The imaginary part of the coefficient of

(n) is about 20% of the quantity (1+[y /zu 85. The real
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part is less than 1% of one. If this procedure is carried out
for Y;, both the real and imaginary parts of the coefficient of

1/2 ) .
n " "J,(n) are less than 1% of the integer 1 and the quantity
(l+[7])/34262 respectively. It should be noted that the gquantity
(1+[7])/a1252 is the correction of the classical shell theory of

. . 13 . e ) - .
k. Reissner ~ due to the effect of transverse shear deformation.
This term does not seem to dominate the solution quantities which will
be developed in the following pages and hence the error will not be
regarded as significant. In the numerical results which will be pre-
gented later, the ratio of radius to thickness and the location o
of the edge of the shell are chosen so that the error in this small

quantity does not exceed 20%. In many cases it is much less.

The solution Y may be written

Y = (MVL O()I/l[(ﬂr_a; LF)"“' ‘-Jl‘f)] (4.13)

If the Equations (4.12) are substituted into this relation and if real
and imaginary parts are equated it is possible to write the quantities

Py and ¥ in terms of Kelvin functions as

Y:.‘}:(M%YA{A3(M,5+K3l-vz,s)+/\*(ﬂe;l,g‘ksau',s) (L. 1k)
- Ao (s + Ky bai,5)+ A2 (i, 5 K, A, )
8= o A{As(KMS*K dei,s)+ Ay (K dos-K i, s)

Ag%(— K &n,s tKy bt s)+A6%(K* ko, S+ K;ﬁm,sg
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where

- & (1+[¥]) _d1+L¥]
K\- |+ l/u-l d'*la. ) Kl o{ lﬂ&é‘ (h.l5)
K = L+=Lv] K == d(1+L¥])

3 = },/ﬁaa ] R Ve

> 1+ L7 - J/&

Ks 5t aed, ) 0N

and where Az, Aj, A5, and Ag are arbitrary constants. The derivatives

of ¥ and Br are given by

t=4, ['TLW) 1=l sy o 9 Bl ot s

+ A%[a (

. Y: S e [ TR A

bed 5)*';/;(%«%%5 K by, SJ

1‘/‘\6[%;(«7‘:«'?) ( o0 ki, 5~ K o, S)*TTJ{.(Mﬂ)ﬁ“ S=K3Jon; ?i
ﬂ AB[ (I o(c/twuXKM%Ka_ﬂu %ﬂgwg(khsmﬁa sj

+ A%{o—(i—«,-m_;)'/l( o sbogk, o, ~K, Bei S M ) Kaders-k J&ei,’sj

+hs h‘L (lx'w.x)/l(" = b )( Ks han,s *K~r}¢‘*"5>

1¢TJ (m«m() (-KSAMI/S’-K‘%M:,SH

+A6[~T)r(qlm¥)l/l(l—om§x°(XK.f Jéml-rkgﬂm,af- (%.16)
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by

K
A My

T am q)'/L (K,,_ /3”1:/5 + K; }w '/ 5 )]

(k.16)

where a "prime” indicates differentiation of a Kelvin function with

respect to . It is possible to prove convergence of the asymptotic

- 1.
series for ¥Y; and Yo by application of the work of Langer.H Convergence

proofs have not been carried out for the derivatives of ¥Y; and Yo but
may be possible on the basis of the same work.

The stress resultants and displacements may now be written in
terms of By, ér’ V¥, and i. The horizontal stress resultant as defined

previously is given by,

Y cacof (k.17)

The vertical stress resultant may be found from the equilibrium egua-

tions and is given by
%
_ _Eh
P ~“ MR A1 Cac of (4.18)

where Ay is an arbitrary constant of integration. The usual stress
resultants Ny and V,. may be written if the components of Py and Py

are computed in the & and 6 directions. Ng may be found from equilib-

rium.
Ny = Py cosx + Py sina
Vp = - Py sina + Py cosa (4.19)
Ng = Pg cosa + PH sinQ.
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In terms of ¥ and ¢ these quantities may be written

No(: ‘R Y + TVl—R—Al

_ _Eh EW
V= P+ R A e (14.20)
Ne:'E_k}"ly

The stress couples which may be found from the relationships between

the rotation By, My,, and Mg, may be written
-Drg
Map = ,—R[,s, + VB, o]
. (4.21)
Mer = R1VA + Br cned]

In terms of u and the reversed normal displacement w, the Equa-

tions (2.5) relating extensional strains to displacements become

) | .
6,( ::—ﬁ_ ((A — LLGJ)
(k.22)
€S =—( 0 chn w,
e — R (U X r
0 0
The quantity wy may be eliminated by subtracting €g from €q giving

€2 - €o :'W((l - uotno(> (4.23)

Using the Equations (2.6) a relation between known stress resultants

and the strains may be written

(4.24)
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The resulting nonhomogeneous first order differential equation in u

may be solved giving
)h : - :
w= -(-fy—nu—(A, am X ﬁcglﬁm;’* Y+ A;””'“) (k.25)

where A2 is the new arbitrary constant of integration. The only un-

known left in (4.22) is wyp. This quantity may finally be written as

Wy :——t‘qu}’ — \ clner + A,[(Hv)mo( x

N

Thus the general solution of the sixth order system of equations in

(k.26)

the free region has been written in terms of the known functions v,

Br, and six unknown coefficients which will be determined later.

C. SOLUTION IN THE CONTACT REGION
Based on (4.4), (4.5), and (4.6) the dimensionless form of the
system of equations which will be used to solve the spherical cap

problem in the contact region is
N N =N Jetnee +C.V = (+.272)
N, +(N_ =N, ) +C,V =0

g
—

M.+(M - M, ) -C, V=0 @

—

N = U+ vichkna + (1+v) W (. 27¢)
o
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N, = vl + & cbnot + (14+v) T (4.274)

F’L( :B + Uﬂo]}nq (k.27e)

M = W/é + /gd%o( (k.27£)

\’/:o?‘?—a + B (k.27¢g)
Wy = (I-cove) = W covo + O ainof (4.27h)
where
o - 50-v) C. = 5R*(1-v) (4.28)
P I T E

The dimensionless stress resultants and displacements are defined in
the same manner as in the previous chapter on the half-ring problem.
The normal stress q+ is found from the second of the equilibrium
Equations (L4.L4).

A fourth order differential equation in W will now be derived
and solved. Substitution of (4.27e), (4.27f) and (L4.27g) into (4.27b)

yields the result

B v oo (ohin +C)p=C, (-0) ¢

where

C3 = CQJ— v (1.30)




1

b5

The result of substituting (4.27¢), (4.27d), and (4.27g) into (L.27a)

and using (4.27h) to eliminate u is given by

—&}L".}.- [~.p_u_o( CaC K —+ (_C,.}. U)Iwno{] CU‘ - C“F w-
(k.31)
= Cy (WG poct +1- a2co) ~ C B Kam of

The Egquation (4.31) may now be solved for B and this result along
with the restraint Equation (L4.27h) can be substituted into (4.29)
yielding

[ X 2] e d

W - (g_@ac«omco(+ﬁmo()ﬁ+(3cac’b( +9.—C3)_u7'

-(3 cac'cy fam ot — 5 coc’ss fam +C7M09J7-—C6"u7'
= (, (t—mo(+ W, e o) (.32)

where

Ce=Cy+Cs 5 Cu=C+ro-1
CS =(, 0y Ls Cy

C,=-2(,+t-2v+v(, +vC +v*

(k.33)

Because (L4.32) governs only the small contact region of the

spherical cap, approximations such as

~ | l . b3k
(Laco(_z,r—j)d‘?ndﬁ;—(—yﬁmo(i’o()mco(c_/j (k. 34)
will be introduced. The quantity Cg may be written

Co=(-vC, -0+, +av - v* (4.35)
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2
The ratio (R/h) 1is considered to be a large number. Hence, the

approximations

Co= (FYCa 7 C3=C, (136

will also be introduced. The Equation (4.32) may now be approximated

by

<" - 2ol W +o(a(3«KbL"o<'*) W

— o (3= kbie*) - brot W

= b'or*| @ ascer + (i ance| |
(4.37)

with the use of (4.34), (4.36) and introduction of the definitions

)1

b* ~ 5 R}(‘l*v , KB = SR;U-V) (4.38)

It should be noted that only one term has been kept in the series ex-

pansion of the coefficient of W whereas two terms have been kept in
the coefficients of W and W. This is done in order that the quantity
2 .
Kb @ may assume values of the same order of magnitude as three.
The homogeneous solution of (4.37) may be found by power series

techniques. TFor computational reasons it has been found convenlent to

rewrite the homogeneous part of (4.37) in the form

4

P W -2 2 (3- Kb 2

/

- 7 (3~ Kblig”>u7'~ 2w =0 (4.39)
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where

(4.40)

s

and "prime” represents differentiation with respect to z. Substitution

of the series

W =

13
3
N

h z2"TC (h.h1)

Nn=0o

into (4.39) gives the indicial equation
c(c® - 82 + 20C - 16) = 0 (4. 42)
which has the four roots

C = k4 2,2, 0. (L.43)

The nonlogarithmic solution which may be found when C = 4 is given by

Z+sz-+}e(t+l&) Kb"ﬂz(w}%)z

\

/ﬁ.) ( L3zl'k"_/\zf-}a-+r¢c

(b.Bk)

where

- » L.k
kl— ll;'a. 7 f"fég,: qéOO / //23 K D / /ﬂ‘ /% ( 5)

The other solutions of (4.39) may be found by repeated use of substitu-

tions of the type

w, (z) = o7 (%)f/v‘, (2)dz (1.16)

which serve to reduce the order of the equation by introduction of a

new dependent variable. The other three solutions of the homogeneous
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equation may be stated as

uf'—;z+Kb 2+ b (6+24,) 2"

PR h )2 S by (3r Skt b) 2 ko

Wy = Z-;‘,Qo?z +-f—bt Z4MZ+~~
3~ 8 (L.b7)
2 2.
Z Kb *
+ B2 Ko 274 ...
2" " rs
X
A 1¢5"/bz + k(1 +hy) 27+ -
a
a
1__l§§b_ 2 /ﬂo?,z F ovoe.

Expansion of the right hand side of (4.37) results in the expres-
sion
4
b o™ [ ug atco +|— poco

4 4 o > Wg &
ot (v~ 5+ 45w )

(4.48)

- 2
This series will be truncated after two terms since w, and & /2 both
are small quantities. A particular solution of the resulting dif-

ferential equation

* U - 20 I + o (3- KB & - o (3- Kblo) i
(4.49)
-B+Of4a"r = *o(w(ﬁ——ﬁ—?:)
. = o~ o
is given by
T — ot > (4.50)
Wp = — Uy + =

Finally the general solution of (L4.50) may be written
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W= B, W+ B, U+ B, W5 +B, Ty + Wy (k.51)

where By, Bp, Bz, and B), are unknown constants of integration.
The remaining displacements may be expressed in terms of w

and its derivatives as

" W oImo + W, cacof + emox — cacol

I

IB:_CLZ(-ﬁ—}OtVLO( v (e = (- ) W
+C, Webnoe + Cq_[d:no(—(l——wj)&co(:)}

(k.52)

The stress resultants are given in terms of W, W, and B by Equations
(4.27¢) through (L.27g) while the normal stress g* may be given by the

relation

+

§ = -—[V+rVePnot-Ng- N, (+.3)

Certain symmetry and boundary conditions must be satisfied by
the displacements and stress resultants at the origin & = O. The con-

ditions

W)=-U ) T)=0 .gg_f -0 (4.54)
e

are all automatically satisfied. The condition
B(o) = © (4.55)
is satisfied only if B3 = O and B) = O since the substitution of W3

and W), into (4.52) yields a nonzero result at the origin due to the
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effect of the terms 22 log Z which appears in both of these solutions.
When the condition on B is satisfied, the condition on the shear re-
sultant is automatically satisfied. The normal stress resultants

and the stress couples may have nonzero values at the origin.

The convergence properties of the series for Wl and Wé and their
first three derivatives may be examined by means of a comparison of
succesgsive terms in the various expansions. If the n-th term in one
of these series is called ap, an examination of the recurrence rela-

tions which determine the various terms shows that

‘am'; < ‘Kblzl ani (k.56)

The values of R/h and @ which were chosen for the numerical portion of
this gnalysis were such that Kb2Z2 < .003. Rapid convergence of the

series for Wi, Wp and their derivatives was thus assured.

D. BOUNDARY MATCHING OF THE TWO SOLUTIONS AND NUMERICAL RESULTS

As the general solutions have now been found in both the contact
and free regions, the only remaining steps are the matching of the
stress resultant and deformation quantities at the common boundary
a =Qa and the satisfying of displacement conditions at the fixed
edge O = Qp. The same procedure will be used for the spherical cap as
was used in the previous chapter on the half-ring.

Consisting of Equations (L4.14), (4.20), (4.21), (4.25), and (L4.26)

the solutions in the free region have the six unknown coefficients Aj,
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Ao, Az, A), As, and Ag. 1In the contact region the urknown coefficicnts
are By and Bp. As before, neither wg nor O have been specified up to
this point. Thus nine boundary conditions and either of w, or a must
be specified for the solution of the unknown gquantities.

At the boundary & = Q the requirements that

w(ot) 20 5 o) =05 Wi ()0 D

will satisfy the condition for a fixed boundary. Thus the six remain-

ing conditions which may be applied at the common boundary a are
be(®) = Up (®) ) N, (%)= Ny (=)
Wo R ==, ) ) M& =M B) g
B &) == B(x) ) Y (R) =- |} &)

where the subscript "f" indicates quantities defined in the free region,
the subscript "c¢" indicates gquantities defined in the contact regionm,
1" n

and the subscript "r'" indicates the reverse sign convention. Because

of the continuity requirements on Ny and My it follows that Ng and Mg

will automatically be made continuous as a result.
Again, because of the complexity of the system of equations,
digital technigues were used to find the unknown guantities wg, Bj, Bo,

A1, Ap, A3, Ay, A5, and A4 in terms of the specified contact length Q.
These results were then used to compute the dimensionless results shown

in Figures 8-12 and Tables 11-15. The definitions for the dimension-

less gquantities remain unchanged.
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Figure 8 and 9 show typical curves for the displacements u, W,
and B. The principal deformation is the normal displacement W. The
values of B shown in Figure 9 are much smaller than would be predicted
by an analysis using the Kirchhoff hypothesis indicating that shear
deformation is apparently important. In Table 11 the quantity R/h is
chosen to be 10, while in Table 12 the ratio has the smaller value of
5. In the case of the thinner shell the quantity B is larger as would
be expected.

The normal stress resultants and the stress couples are shown in
Figure 10. The quantity Md is negative in most of the contact region
indicating the flattening of the shell. The moment is positive for
most of the free region indicating the sharp curvature near the edge
of the contact region. The normal stress resultant E& is negative and
nearly constant as would be expected for a cap.

Typical shear resultant and normal pressure curves are shown
in Figure 1ll. An interesting aspect of this curve is the indication
that §+ approaches a nonzero limit as the contact length a approaches
zero, This fact has been demonstrated numerically for the spherical
cap problem and analytically for the half-ring problem. Even though
§+ is nonzero for & = O, the limit value of applied load is zero as
would be expected for the shear deformation theory. This might be
viewed as the result of a finite nonzero pressure acting over an area

with zero magnitude. Finally Figure 12 shows a plot of the normal




.

NORMAL DISPLACEMENT - W x 102

53

002004 OOG0.0BOIOOIZ 014 Ol6 018 020
ANGLE a (RADIANS)

Figure 8. Normal displacement versus position for cap.
Q= 0.01, 0.03, Qe =0.2, R/h = 10, R =5 in., E = 222
1b/in2, v = 0.5.
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Figure 10. Normal stress resultants and stress couples versus p351t1:m
for cap. @ = 0.03, Qo = 0.2, R/h = 10. R = 5 in.. E = 222 1b/in%.

v = 0.5.
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load, as given by the shear resultant V evaluated at q = a, versus the
central normal deflection Wgy.

The Tables 11 and 12 are computed for two values of R/h with other
rarameters held constant. The deformations shown in the two tables
are similar, as forced by the boundary conditions, but the stress
quantities are greater for the thicker ring as would be expected. In
Tables 12 and 15 the length of the cap, as given by o, is varied. As
would be expected, the deformations of the longer cap are larger while
the stress quantities are smaller. In Tables 13 and 14 the contact
length @ is varied. Smaller stress and deflections are noted for the
smaller value of Q.

In Tables 14 and 15 the material properties of the cap are varied.
Since the magnitudes of the dimensionless quantities are similar for
the two tables, the deformations T and W of the caps are similar while
the stresses carried by the stiff cap are much greater as would be
expected. It should be noted in Table 15 that the rotation B and the
stress couples My and Mg are positive in the contact region. This
would not be expected in view of the moment eguilibrium equation from
(Muh), This may point out a shortcoming of some aspect of the theoreti-
cal or numerical analysis. This behavior was noted only for caps
which were stiff and thick at the same time and seemed to affect the
stress couples and rotation only in the small region in the vicinity

of the contact area.
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When the numerical results were substituted into the original
equilibrium Equations (4.4), it was found that the first two equations
were well satisfied. However, the moment eguation was not well satis-
fied, especially for caps with large Q, and R/h. At the present
time the source of this difficulty is unknown. Future studies of the
approximations which have been made in the analytical and numerical

work should lead to the source of the problem.



CHAPTER V

EXPERIMENTS ON HALF-RINGS

Figure 13 ig a sketch of the model used to test the shear deforma-

tion theory. The network of lines was inked on the surface so that

Plexiglas base

2 \

+52 in.

N | 936 in.
Rubber ring

Figure 13. Sketch of rubber test ring with E = 227.6 lb/in?, v = Lél,
and G = 77.6 1b/in%.
photographs of the deformation field could be taken. Dow-Corning
Silastic RTV room-curing rubber was chosen as the material for two
reasons. First, it is easy to cast into any desired shape. Second,
it can be easily bonded onto most hard metallic and nonmetallic sur-
faces during the casting process. Thus the model was cast and bonded
to hard Plexiglas at the fixed edge @ = O in one operation.

Because of the ease of molding this material it was also easy to

cast strips for modulus tests at the same time the half-ring was being

60
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cast. The modulus remained nearly constant over a large range of
deflections and loading rates and so, for the purposes of the current
experiment, it was assumed that the material was Hookean.

The simplest tests to carry out were the load versus central de-
flection tests shown in Figure 1l4. The half-ring was mounted in a
table model Instron testing machine and traveling head deflection versus
applied load graphs were produced directly. Pictures of the ring were
alsc made simultaneously to record the deformation pattern. The Instron
data was easily reproducible and showed excellent agreement with shear
deformation theory. The negative of the deformed ring for E (90) = .007
was enlarged and superimposed on a negative of the undeformed ring.
From this picture the experimental points shown in Figure 15 were deter-
mined. Agreement with shear theory was again good.

In Figure 16 is shown a plot of applied load versus length of
the contact region. The experimental data was obtained by inking
the outer edge { = h/2 of the ring and pressing it against a piece of
paper. An independent check of this data was accomplished when tests
with a pressure sensing device mounted in the rigid contacting surface
yielded about the same results. A possible reason: for the discrepancy
is the neglecting of all dependence on the coordinate direction normal
to the a - { plane. It is well-known that the cross-section of a rec-
tangular beam does not remain rectangular during bending due to the

Poisson's ratio effect. The result in this experiment was that the
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ink prints of the contact region were not rectangular thus making it
difficult to determine a true value for Q.

Figure 17 shows a plot of pressure distribution versus location.
There is no indication of peesk values of pressure near the edge of
the contact region in the experimental data. However these peak
values have been observed for thin rings in other research involving
thin ring analogies for pneumatic tires. The fact that a nonzero
value of E+ is predicted at the edge of the contact region is a short-
coming of the shear deformation theory as applied in this thesis. It
is presumed necessary to include the effects of transverse normal de-

formation to overcome this difficulty.
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CHAPTER VI

CONCLUSIONS

A class of elastic shell problems involving the contact of cer-
tain symmetric shells with rigid flat smooth surfaces has been con-
sidered. GShear deformation has been included in the governing equations.
It has been shown that a possible means for analyzing such problems in-
volves the solving of the system equations separately in the free region
and in the contact region. The two solutions are then matched at the
common boundary at the edge of the contact region.

Numerical computations of the deformations and stress resultants
for half-rings and spherical caps with radius-to-thickness ratios which
are 10 or less have shown that the effect of shear deformation should
be included to avoid serious error. Experiments performed on half-
rings tend to verify the shear-deformation analysis. An exception is
the prediction of the normal stress in the contact region. Although
the shear-deformation analysis offers a better approximation than
the classical bending theory, it may be surmised that transverse nor-
mal stresses and strains should not be neglected for accurate predic-

tions of this quantity.
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APPENDIX
NUMERICAL VALUES OF LOADS AND DISPLACEMENTS

FOR HALF-RINGS AND SPHERICAL CAPS WITH
VARIOUS GEOMETRICAL AND MATERIAL. PROPERTIES
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